
Java Applets

Introduction to Java and
Java Applets

 Java applications
 Run in stand-alone mode
 No additional software required (such as a Web browser)

 Java applets
 Compiled Java class files
 Run within a Web browser (or an appletviewer)
 Loaded from anywhere on the Internet

 security restrictions!

Java Basic Concepts

 Source Code converted to Byte code

 Byte code -machine code of JVM (Java Virtual
Machine)

 Each real machine must have own JVM

 Interpretation

 JIT compilation

 Direct Execution

 Java Byte Code consists of

 1 Byte opcode

 1 or more operands

Capabilities and Limitations of
Applets

 Build full-featured graphical user interfaces
(suitable for the Web)

 Communicate over the Internet to a host server
(support Client-Server architecture)

 Communicate with other applets on a form
 Environment-neutral (any platform)
 Limitations on Java applets to ensure client security

Capabilities and Limitations of
Applets

 Bytecode verification
 Forces loaded Java applets to undergo a rigorous set of checks in order to

run on the local system

 The verifier checks each bytecode before it is executed to make sure that it
is not going to perform an illegal operation

 Client-side precautions
 Most Web browsers preclude Java applets from doing file access or

communicating with any computer on the Internet other than the computer
that the applet was loaded from

 Enforced by the client Web browser (or other applet loader) but done by a
part of the Java runtime engine known as the class loader

First Java Applet

import java.awt.*; //Contains all of the classes for creating user interfaces

//and for painting graphics and images
import java.applet.Applet;

public class HelloFromVenus extends Applet {

public void paint(Graphics g) {

Dimension d = getSize();

g.setColor(Color.orange);

g.fillRect(0,0,d.width,d.height);

g.setFont(new Font("Sans-serif",Font.BOLD,24));

g.setColor(new Color(255, 10, 0));

g.drawString("Hello From Venus, a Mars Colony!",

40, 25);

g.drawImage(getImage(getCodeBase(),"venus.jpg"),

20, 60, this);

}

}

HTML Source

<html>

<head>

<title> Hello From Venus Applet </title>

</head>

<body bgcolor=black text=white>

<h2>Here is the Hello From Venus

Applet</h2>

<center>

<applet code="HelloFromVenus.class" width=700
height=500>
</applet>

</center>

<hr>

The source.

</body>

</html>

Elements of Java Applets

 Superclass: java.applet.Applet

 extend javax.swing.JApplet if you have swing
components

 Swing: Sun's set of GUI components that give much
fancier screen displays than the raw AWT

 No main() method

 paint() method paints the picture

 Applet tags:

code width height

Compile and Run an Applet

To compile: javac HelloFromVenus.java Generates
HelloFromVenus.class

To run:
a) Use the appletviewer from JDK

appletviewer Venus.html

b) Open page from browser:

Venus.html

Applet’s Life

 Each applet has four major events in its lifetime:
 Initialization --- init()
 Starting --- start()
 Painting --- paint(Graphics)
 Stopping --- stop()
 Destroying --- destroy()

 The methods
 defined Applet class

 Except for paint() in class java.awt.Container

 do nothing--they are stubs
 You make the applet do something by overriding these

methods

Applet’s Life

 When an applet begins the following sequence of methods is
called
 init()

 informs applet that it has been loaded into the system
 Called only once
 an ideal place to initialize variables and create UI objects

 start()

 informs applet that it should start its execution
 Right after init()
 Each time the page is loaded and restarted

 paint(Graphics)

 When an applet dies (or is terminated), the following sequence
of method calls takes place:
 stop()

 informs applet that it should stop its execution
 When a web browser leaves the HTML document

Applet’s Life

 destroy()

 informs applet that it is being reclaimed and that it should
destroy any resources that it has allocated

 Use destroy() to explicitly release system resources
(like threads)
 Usually released automatically (Auto garbage collection)

 Called only once
 when the environment determines that your applet needs to be

removed completely from memory

 The stop() method is always called before destroy()

 no guarantee that this method will be completely executed

 The Java Virtual Machine might exit before a long destroy
method has completed

Methods are called in this
order

 init and destroy are only
called once each

 start and stop are called
whenever the browser enters and
leaves the page

 do some work is code called by
your listeners

 paint is called again when the
applet needs to be repainted

init()

start()

stop()

destroy()

paint

do other work

public void paint(Graphics g)

 Needed if you do any drawing or painting other than just using standard
GUI Components

 Any painting you want to do should be done here, or in a method you call
from here

 For painting done in other methods
 Never call paint(Graphics), always call repaint()

 Life Cycle Applet via AppletViewer

 Automatically called when

 when the applet begins execution

 the window in which the applet is running may be overwritten by another
window and then uncovered

 the applet window is resized

Other Applet Methods

 public void repaint()

 public void update (Graphics)

 public void showStatus(String)

 public String getParameter(String)

 http://download.oracle.com/javase/6/docs/api/j
ava/applet/Applet.html

repaint()

 Call repaint() when you have changed something
and want your changes to show up on the screen
 after drawing commands (drawRect(...),
fillRect(...), drawString(...), etc.)

 Outside paint

 repaint() is a request
 it might not happen!
 When you call repaint(), Java schedules a call to
update(Graphics g)

 public void update(Graphics g) {
// Fills applet with background
// color, then

paint(g);
}

Sample Graphics methods

 A Graphics is something you can paint on

g.drawRect(x, y, width, height);

g.fillRect(x, y, width, height);

g.drawOval(x, y, width, height);

g.fillOval(x, y, width, height);

g.setColor(Color.red);

g.drawString(“Hello”, 20, 20); Hello

Drawing Strings

g.drawString("A Sample String", x, y)

The java.awt.Color Class

• Instances of the Color class represent colors

• new Color(r, g, b)

• where r, g, b are the values of the red, green, and
blue components, respectively

• Range of 0 to 255
• Set of constants defined in java.awt.Color

The java.awt.Font Class

 Fonts are specified with three attributes:

 font name: Serif Sans-serif Monospaced Dialog

DialogInput TimesRoman Helvetica Courier

Dialog

 font style: PLAIN BOLD ITALIC

 Styles can be combined: Font.BOLD|Font.ITALIC

 font size: a positive integer

 A font can be created as follows:

 new Font(name, style, size)

The java.awt.Graphics

Class

Represent Graphics Context
A graphics context is an abstraction of various drawing
surfaces:

-screen
-printer
-off-screen image (an image stored in memory)

Provide a rich set of graphics methods
drawString() drawLine()

drawArc() fillArc()

drawOval() fillOval()

drawPolygon() fillPolygon()

drawRect() fillRect()

drawRoundRect() fillRoundRect()

The java.awt.Graphics Class

(cont'd)

setColor(color) set the current color
setFont(font) set the current font
setPaintMode() set the paint, or overwrite mode
setXORMode(color) set the XOR mode
getColor() get the current color
getFont() get the current font
getFontMetrics() get the font metrics of the current font
getFontMetrics(font) get the font metrics for the specified font

showStatus(String s)

 showStatus(String s) displays the String

in the applet’s status line

 Each call overwrites the previous call

 You have to allow time to read the line!

Example Applet
 import java.awt.*;

 import java.applet.Applet;

 import javax.swing.JOptionPane;

 //try it in eclipse using AppletViewer

 public class LifeCycleApplet extends Applet

 {

 Font theFont = new Font("Helvetica", Font.BOLD, 20);

 String Status;

 public void init(){

 Status = "Initializing!";

 showStatus("The applet is initializing!");

 JOptionPane.showMessageDialog(this,Status);

 repaint();}

 public void start(){

 Status += "--Starting!";

 showStatus("The applet is starting!");

 JOptionPane.showMessageDialog(this,Status);

 repaint();}

 }

Example Applet

 public void stop(){

 Status += "--Stopping!";

 showStatus("The applet is stopping!");

 JOptionPane.showMessageDialog(this,Status);

 repaint();}

 public void destroy(){

 Status += "--Destroyed!";

 showStatus("The applet is being destroyed!");

 JOptionPane.showMessageDialog(this,Status);

 //might cause freezing problems due to

 //unpredictability of when VM calls this method

 repaint();

 }

Example Applet

 public void paint(Graphics g){

 Status += "--Painting!";

 Dimension d = getSize();

 g.setColor(Color.orange);

 g.fillRect(0,0,d.width,d.height);

 g.setFont(theFont);

 g.setColor(Color.blue);

 g.drawString("Author:"+getParameter("FName")+" "+getParameter("LName"),50,50);

 g.drawString("URL of the applet : " + getCodeBase(), 50, 100);

 g.drawString("URL of document : " + getDocumentBase(), 50, 150);

 g.drawString(Status, 50, 200);

 showStatus("The applet is painting!");

 //JOptionPane.showMessageDialog(this,Status);}

HTML Tags

<html>

<head>

<title> Hi World Applet </title>

</head>

<body>

<applet code="HiWorld.class" width=300

height=200>

<param name="arraysize" value="10">

</applet>

</body>

</html>

HTML Source

<!--Clock.html-->

<html>

<head>

<title>Clock</title>

</head>

<body bgcolor=white>

<h1>The Digital Clock Applet</h1><p>

<applet code= DigitalClock.class
width=400 height=100>

</applet>
<p><hr>

The source

</body>

</html>

The <APPLET> Tag

 The syntax for using the <APPLET> tag is the following:
 <APPLET attributes>
<applet_parameter_tags>
alternate_content
</APPLET>

 The APPLET attributes are standard values that all applets
accept and are a standard part of HTML

 The applet_parameter_tags contain applet-specific
parameters that are read by the applet at runtime

 This is a handy way of passing arguments to an applet to allow
the applet to be more generic

The <APPLET> Tag

 <APPLET> Tag Attributes
 ALT-Alternate text that can be displayed by text-only browsers
 ALIGN-The ALIGN attribute designates the alignment of the applet

within the browser page
 CODE-(Required) The CODE attribute is used to indicate the .class file

that loads the applet
 CODEBASE-The CODEBASE attribute is used to indicate the location of

the .class file that loads the applet
 HEIGHT-(Required) The HEIGHT attribute is used to set the applet's

bounding rectangle height
 HSPACE-The HSPACE attribute sets the amount of horizontal space to

set off around the applet
 NAME-The NAME attribute sets the symbolic name of the applet
 VSPACE-The VSPACE attribute sets the amount of vertical space to set

off around the applet
 WIDTH-(Required) The WIDTH attribute is used to set the applet's box

width

The <APPLET> Tag

 Passing Parameters to Java Applets
 Parameters are an easy way to configure Java applets

without actually changing the source file
 Background color based on preference (different HTML files)

 In the previous applet example, the text drawn on the
screen was drawn using the blue color
 This was "hardwired" into the applet's code

 However, just as easily, we could have passed a parameter
to the applet specifying that it use the blue tag

 See next example

The <APPLET> Tag

 // Passing parameters to the applet using HTML parameters.
<HTML>
<HEAD>
<TITLE>This is the LifeCycle applet!</TITLE>
</HEAD>
<BODY>
<H1>Prepare to be amazed!</H1>

<APPLET CODE="LifeCycleApplet.class" WIDTH=600
HEIGHT=50>
<PARAM NAME=color VALUE="blue">
If you can see this, your browser does not support Java
applets
</APPLET>
</BODY>
</HTML>

 The only question left to be answered is this: how does the Java applet
determine the value of the parameters?

The <APPLET> Tag

 The answer is that the applet has to call the getParameter() method
supplied by the java.applet.Applet parent class

 Calling getParameter("color") using the previous Java applet example
would return a String value containing the text "blue“

 It is then left up to the applet to take advantage of this information and
actually paint the text blue on the screen

 Here are three methods commonly used by applets:
 String getParameter(String name): Returns the value for the specified

parameter string
 URL getCodeBase(): Returns the URL of the applet
 URL getDocumentBase(): Returns the URL of the document containing the

applet

